e-Research Infrastructures for e-Science

Axel Berg
SARA national HPC & e-science support center
RAMIRI, June 15, 2011
Science Park Amsterdam
a world of science in a city of inspiration

- Faculty of Science of the “University of Amsterdam”
- National Institute for Nuclear Physics and High Energy Physics (NIKHEF)
- Institute for Atomic and Molecular Physics (AMOLF)
- National Research Institute for Mathematics and Computer Science (CWI)
- SARA national HPC & e-science support center
- + 80 innovative companies
SARA’s Mission: Support Science & Innovation

SARA Foundation is an independent (hybrid) organization with ~140 fte’s in 2 locations (Amsterdam and Almere)

The mission of SARA is 2-fold:
1. Supporting research in the Netherlands by providing high-end not-for-profit ICT services to research communities [SARA for Science & Innovation]

2. Offering commercial high-end commodity ICT services based on the expertise built in the high-end activities [Vancis for a VANCed Ict Services]
SARA National Supercomputing Center

> SARA supports research in the Netherlands by providing high-end computing-, networking-, storage-, visualization- and e-Science support services and expertise

> These services are guaranteed by:

- deployment of integrated HPC services and infrastructure
- provision of multidisciplinary expertise and support in ICT-technology and applications
- conducting necessary innovation, engineering and development to support and sustain those services
- participation in National and International e-Science and Grid project’s
- connection to and integration into international e-Infrastructures, collaboration
e-Infrastructures SARA

Huygens National Super
IBM Power 6, 3328 cores, 15.25 TB of memory, 700 TB of disk space, 60 TFlop/s

LISA National Compute Cluster
Dell cluster 4480 cores, 12 TB of memory, 20 TFlop/s

Grid Resources
2376 Cores, 3408 TB of disk, 2000 TB tape
12 BioInfo Sites Life Science Grid
High Energy Physics, Astronomy, Bio Info

Visualization
High Resolution Tiled Panel Display
Remote Visualization

Innovative Infrastructures
Cloud
GPU
Hadoop
iRODs

Network
SURFnet 6
Netherlight
Connectivity is key

The European Optical Exchange Point @SARA
Advances in Science

Molecular Sciences

Weather & climate prediction

Astronomy

Earth Sciences

Health care

slide from Thom Dunning, NCSA
Advances in Society
Stability of the Atlantic Meridional Overturning Circulation (SAMOC)

- Huygens P6: 750,000 core hours
- Ocean model resolution: 10 km (0.1 degree)
- 1 year model simulation ~ 1 day on about 1200 cores on natl. supercomputer

- Utrecht University, Netherlands
 - Prof. dr. ir. H.A. Dijkstra

- Climate System Modeling Group, Los Alamos Natl. Lab., USA
 - M. Maltrud, M. Hecht, P. Jones, W. Weijer

- Simulation data produced: > 100 TB
Science towards Exascale

- Scientific experiments and data-intensive computing generate today exabytes of data
- Driven by e.g. detector and HW developments
 - Increased resolution, automation & robotization
 - Medical imaging (fMRI): ~1 GByte per measurement
 - Satellite world imagery: ~5 TByte/year
 - Climate modelling: 100 TB per simulation
 - Astronomy LOFAR: >2,5 PByte per year
 - LHC physics: 10-30 PByte per year
- Entering new area of science at Petascale/Exascale level: more than just evolutionary approach will be needed
High Throughput Data Analysis for the Large Hadron Collider (CERN)
SARA & NIKHEF receive, store and analyze 10% of all LHC data
LIFEWATCH: e-science & technology infrastructure for biodiversity data and observatories
Problem Solving Environments: FlySafe: development of bird avoidance models

Slides courtesy of prof. W. Bouten, UvA
HPC is recognized as an important infrastructure (USA, Europe, Japan, India, China)
HPC supports innovation
Out-Compute to Out-Compete™ *
Research communities and research infrastructures

> **ESFRI**: European Strategy Forum on Research Infrastructures

> Examples of research communities/research infrastructures:

> **CLARIN**: Common Language Resources and Technology Infrastructure

> **ENES**: European Network for Earth System Modeling

> **ELIXIR**: European Life Sciences Infrastructure For Biological Information

> **LIFEWATCH**: e-science and technology infrastructure for biodiversity data and observatories

> **wLCG**: High Energy Physics

> **LOFAR/SKA**: astronomy

> **VPH**: Virtual Physiological Human
Dutch national and European e-infrastructures

<table>
<thead>
<tr>
<th>National e-infrastructure</th>
<th>National</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid & Cloud Computing</td>
<td>BiG Grid www.biggrid.nl</td>
<td>www.egi.eu</td>
</tr>
<tr>
<td>Network</td>
<td>SURFnet www.surfnet.nl</td>
<td>www.geant.net</td>
</tr>
<tr>
<td>Data services</td>
<td>BiG Grid www.biggrid.nl</td>
<td>‘www.eudat.eu’</td>
</tr>
</tbody>
</table>
ESFRI project requirements for Pan-European e-infrastructure resources and facilities
EUdat: Collaborative Data Infrastructure

Data Generators

Users

Data Curation

Community Support Services

Common Data Services

Trust

User functionalities, data capture & transfer, virtual research environments

Data discovery & navigation, workflow generation, annotation, interpretability

Persistent storage, identification, authenticity, workflow execution, mining
Our vision is a scientific e-infrastructure that supports seamless access, use, re-use, and trust of data. In a sense, the physical and technical infrastructure becomes invisible and the data themselves become the infrastructure – a valuable asset, on which science, technology, the economy and society can advance.

Open Access and Permanent Access

> Open access to scientific information and data

> Significant difference between ‘Open Access to research results’ and ‘Permanent Access to research data’

> Permanent Access can be addressed at a technical, operational and funding level

> Open Access is policy-based and primarily the issue of the data owners

> Service providers can facilitate services that enable policy-based access
Data explosion in science (experimental sciences & data-intensive computing); data is generated centrally and/or distributed

Scientific communities are getting organized and are global, and so are e-infrastructures (PRACE, EGI, GEANT, Eudat)

Research requires a tightly integrated e-infrastructure service that contains all elements (compute, storage, network, visualization, support)

Next PRACE Research Infrastructure as an example